Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.409
Filtrar
1.
Quant Imaging Med Surg ; 14(4): 2738-2746, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617143

RESUMO

Background: Diffusion magnetic resonance imaging (MRI) allows for the quantification of water diffusion properties in soft tissues. The goal of this study was to characterize the 3D collagen fiber network in the porcine meniscus using high angular resolution diffusion imaging (HARDI) acquisition with both diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI). Methods: Porcine menisci (n=7) were scanned ex vivo using a three-dimensional (3D) HARDI spin-echo pulse sequence with an isotropic resolution of 500 µm at 7.0 Tesla. Both DTI and GQI reconstruction techniques were used to quantify the collagen fiber alignment and visualize the complex collagen network of the meniscus. The MRI findings were validated with conventional histology. Results: DTI and GQI exhibited distinct fiber orientation maps in the meniscus using the same HARDI acquisition. We found that crossing fibers were only resolved with GQI, demonstrating the advantage of GQI over DTI to visualize the complex collagen fiber orientation in the meniscus. Furthermore, the MRI findings were consistent with conventional histology. Conclusions: HARDI acquisition with GQI reconstruction more accurately resolves the complex 3D collagen architecture of the meniscus compared to DTI reconstruction. In the future, these technologies have the potential to nondestructively assess both normal and abnormal meniscal structure.

2.
ACS Omega ; 9(14): 16106-16117, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617637

RESUMO

The static gravimetric method was used to measure the solubility of 17-α hydroxyprogesterone (OHP) in 13 pure solvents ranging from 278.15 to 323.15 K. The results indicate that the experimental solubility of OHP increases with increasing temperature. The experimental solubility data were correlated by the selected van't Hoff model, λh model, modified Apelblat model, Yaws model, and nonrandom two-liquid (NRTL) model. The fitting results show that the Yaws model can give better correlation results by fitting 13 different pure solvent systems. Based on the NRTL equation, the thermodynamic analysis of solubility data showed that the mixing process was spontaneous. The Hansen solubility parameters (HSPs) and solvent effect were applied to explore these solubility characteristics. Finally, the thermodynamic properties ΔsolH°, ΔsolS°, ΔsolG°, %ξH, and %ξTS were calculated by the van't Hoff model equation. The results showed that ΔsolH°, ΔsolS°, and ΔsolG° are all positive values, indicating that the dissolution of OHP in the selected solvent is an endothermic reaction with increasing entropy.

3.
ACS Appl Bio Mater ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556979

RESUMO

Recent advances have been made in second near-infrared (NIR-II) fluorescence bioimaging and many related applications because of its advantages of deep penetration, high resolution, minimal invasiveness, and good dynamic visualization. To achieve high-performance NIR-II fluorescence bioimaging, various materials and probes with bright NIR-II emission have been extensively explored in the past few years. Among these NIR-II emissive materials, conjugated polymers and conjugated small molecules have attracted wide interest due to their native biosafety and tunable optical performance. This review summarizes the brightness strategies available for NIR-II emissive conjugated materials and highlights the recent developments in NIR-II fluorescence bioimaging. A concise, detailed overview of the molecular design and regulatory approaches is provided in terms of their high brightness, long wavelengths, and superior imaging performance. Then, various typical cases in which bright conjugated materials are used as NIR-II probes are introduced by providing step-by-step examples. Finally, the current problems and challenges associated with accessing NIR-II emissive conjugated materials for bright NIR-II fluorescence bioimaging are briefly discussed, and the significance and future prospects of these materials are proposed to offer helpful guidance for the development of NIR-II emissive materials.

4.
Opt Express ; 32(6): 10587-10598, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571266

RESUMO

In the present study, we have devised and conducted an investigation into a real-time tunable notched waveguide, employing a voltage-controllable plasmonic resonator. This plasmonic resonator is meticulously engineered from a ferroelectric substrate featuring a compound multilayer structure, thereby conferring it with the remarkable capability of flexible permittivity control. Furthermore, we have implemented two non-intersecting Archimedean spiral electrodes on the surface of the ferroelectric substrate, dedicated to applying the bias field onto the controllable plasmonic ferroelectric resonator (CPFR). Notably, our system affords the capability to finely tune both the magnetic and electric modes, achieving precise adjustments of 8.7% and 11%, respectively. The performance is complemented by minimal insertion loss, rapid response times, and a broad range of potential applications, positioning it as a candidate for a diverse array of notched waveguide scenarios.

5.
Environ Sci Ecotechnol ; 20: 100408, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560758

RESUMO

Green-blue spaces (GBS) are pivotal in mitigating thermal discomfort. However, their management lacks guidelines rooted in epidemiological evidence for specific planning and design. Here we show how various GBS types modify the link between non-optimal temperatures and cardiovascular mortality across different thermal extremes. We merged fine-scale population density and GBS data to create novel GBS exposure index. A case time series approach was employed to analyse temperature-cardiovascular mortality association and the effect modifications of type-specific GBSs across 1085 subdistricts in south-eastern China. Our findings indicate that both green and blue spaces may significantly reduce high-temperature-related cardiovascular mortality risks (e.g., for low (5%) vs. high (95%) level of overall green spaces at 99th vs. minimum mortality temperature (MMT), Ratio of relative risk (RRR) = 1.14 (95% CI: 1.07, 1.21); for overall blue spaces, RRR = 1.20 (95% CI: 1.12, 1.29)), while specific blue space types offer protection against cold temperatures (e.g., for the rivers at 1st vs MMT, RRR = 1.17 (95% CI: 1.07, 1.28)). Notably, forests, parks, nature reserves, street greenery, and lakes are linked with lower heat-related cardiovascular mortality, whereas rivers and coasts mitigate cold-related cardiovascular mortality. Blue spaces provide greater benefits than green spaces. The severity of temperature extremes further amplifies GBS's protective effects. This study enhances our understanding of how type-specific GBS influences health risks associated with non-optimal temperatures, offering valuable insights for integrating GBS into climate adaptation strategies for maximal health benefits.

6.
Open Life Sci ; 19(1): 20220817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585643

RESUMO

Colorectal cancer (CRC) is the third most common tumor, with an increasing number of deaths worldwide each year. Tremendous advances in the diagnosis and treatment of CRC have significantly improved the outcomes for CRC patients. Additionally, accumulating evidence has hinted the relationship between acidic nuclear phosphoprotein 32 family member E (ANP32E) and cancer progression. But the role of ANP32E in CRC remains unclear. In our study, through TCGA database, it was demonstrated that the expression of ANP32E was enhanced in COAD tissues (n = 286). In addition, the mRNA and protein expression of ANP32E was also confirmed to be upregulated in CRC cell lines. Further investigation uncovered that knockdown of ANP32E suppressed cell proliferation and glycolysis, and facilitated cell apoptosis in CRC. Moreover, inhibition of ANP32E inhibited the AKT/mTOR pathway. Through rescue assays, we discovered that the reduced cell proliferation, glycolysis and the enhanced cell apoptosis mediated by ANP32E repression was reversed by SC79 treatment. In summary, ANP32E aggravated the growth and glycolysis of CRC cells by stimulating the AKT/mTOR pathway. This finding suggested that the ANP32E has the potential to be explored as a novel biomarker for CRC treatment.

7.
Angew Chem Int Ed Engl ; : e202403980, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588065

RESUMO

Electrochemical reduction of CO2 and nitrate offers a promising avenue to produce valuable chemicals through the using of greenhouse gas and nitrogen-containing wastewater. However, the generally proposed reaction pathway of concurrent CO2 and nitrate reduction for urea synthesis requires the catalysts to be both efficient in both CO2 and nitrate reduction, thus narrowing the selection range of suitable catalysts. Herein, we demonstrate a distinct mechanism in urea synthesis, a tandem NO3- and CO2 reduction, in which the surface amino species generated by nitrate reduction play the role to capture free CO2 and subsequent initiate its activation. When using the TiO2 electrocatalyst derived from MIL-125-NH2, it intrinsically exhibits low activity in aqueous CO2 reduction, however, in the presence of both nitrate and CO2, this catalyst achieves an excellent urea yield rate of 43.37 mmolï½¥g-1ï½¥h-1 and a Faradaic efficiency of 48.88% at -0.9 V vs. RHE in a flow cell. Even at a low CO2 level of 15%, the Faradaic efficiency of urea synthesis remains robust at 42.33%. The tandem reduction procedure was further confirmed by in-situ spectroscopies and theoretical calculations. This research provides new insights into the selection and design of electrocatalysts for urea synthesis.

8.
Bone Res ; 12(1): 24, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594260

RESUMO

Ossification of the Posterior Longitudinal Ligament (OPLL) is a degenerative hyperostosis disease characterized by the transformation of the soft and elastic vertebral ligament into bone, resulting in limited spinal mobility and nerve compression. Employing both bulk and single-cell RNA sequencing, we elucidate the molecular characteristics, cellular components, and their evolution during the OPLL process at a single-cell resolution, and validate these findings in clinical samples. This study also uncovers the capability of ligament stem cells to exhibit endothelial cell-like phenotypes in vitro and in vivo. Notably, our study identifies LOXL2 as a key regulator in this process. Through gain-and loss-of-function studies, we elucidate the role of LOXL2 in the endothelial-like differentiation of ligament cells. It acts via the HIF1A pathway, promoting the secretion of downstream VEGFA and PDGF-BB. This function is not related to the enzymatic activity of LOXL2. Furthermore, we identify sorafenib, a broad-spectrum tyrosine kinase inhibitor, as an effective suppressor of LOXL2-mediated vascular morphogenesis. By disrupting the coupling between vascularization and osteogenesis, sorafenib demonstrates significant inhibition of OPLL progression in both BMP-induced and enpp1 deficiency-induced animal models while having no discernible effect on normal bone mass. These findings underscore the potential of sorafenib as a therapeutic intervention for OPLL.


Assuntos
Ligamentos Longitudinais , Ossificação do Ligamento Longitudinal Posterior , Animais , Ligamentos Longitudinais/metabolismo , Osteogênese/genética , Sorafenibe/farmacologia , Ossificação do Ligamento Longitudinal Posterior/genética , Diferenciação Celular
9.
Artigo em Inglês | MEDLINE | ID: mdl-38568776

RESUMO

Dietary habits have been proven to have an impact on the microbial composition and health of the human gut. Over the past decade, researchers have discovered that gut microbiota can use nutrients to produce metabolites that have major implications for human physiology. However, there is no comprehensive system that specifically focuses on identifying nutrient deficiencies based on gut microbiota, making it difficult to interpret and compare gut microbiome data in the literature. This study proposes an analytical platform, NURECON, that can predict nutrient deficiency information in individuals by comparing their metagenomic information to a reference baseline. NURECON integrates a next-generation bacterial 16S rRNA analytical pipeline (QIIME2), metabolic pathway prediction tools (PICRUSt2 and KEGG), and a food compound database (FooDB) to enable the identification of missing nutrients and provide personalized dietary suggestions. Metagenomic information from total number of 287 healthy subjects was used to establish baseline microbial composition and metabolic profiles. The uploaded data is analyzed and compared to the baseline for nutrient deficiency assessment. Visualization results include gut microbial composition, related enzymes, pathways, and nutrient abundance. NURECON is a user-friendly online platform that provides nutritional advice to support dietitians' research or menu design.


Assuntos
Dieta , Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Metagenoma , Necessidades Nutricionais
10.
Front Immunol ; 15: 1382971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638427

RESUMO

Previous studies have demonstrated an association between lymphatic vessels and diseases caused by bacterial infections. Listeria monocytogenes (LM) bacterial infection can affect multiple organs, including the intestine, brain, liver and spleen, which can be fatal. However, the impacts of LM infection on morphological and functional changes of lymphatic vessels remain unexplored. In this study, we found that LM infection not only induces meningeal and mesenteric lymphangiogenesis in mice, but also impairs meningeal lymphatic vessels (MLVs)-mediated macromolecules drainage. Interestingly, we found that the genes associated with lymphatic vessel development and function, such as Gata2 and Foxc2, were downregulated, suggesting that LM infection may affect cellular polarization and valve development. On the other hand, photodynamic ablation of MLVs exacerbated inflammation and bacterial load in the brain of mice with LM infection. Overall, our findings indicate that LM infection induces lymphangiogenesis and may affect cell polarization, cavity formation, and valve development during lymphangiogenesis, ultimately impairing MLVs drainage.


Assuntos
Listeria monocytogenes , Listeriose , Vasos Linfáticos , Animais , Camundongos , Listeriose/microbiologia , Linfangiogênese , Meninges
11.
PLoS One ; 19(4): e0300423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626141

RESUMO

BACKGROUND: Numerous metabolomic studies have confirmed the pivotal role of metabolic abnormalities in the development of idiopathic pulmonary fibrosis (IPF). Nevertheless, there is a lack of evidence on the causal relationship between circulating metabolites and the risk of IPF. METHODS: The potential causality between 486 blood metabolites and IPF was determined through a bidirectional two-sample Mendelian randomization (TSMR) analysis. A genome-wide association study (GWAS) involving 7,824 participants was performed to analyze metabolite data, and a GWAS meta-analysis involving 6,257 IPF cases and 947,616 control European subjects was conducted to analyze IPF data. The TSMR analysis was performed primarily with the inverse variance weighted model, supplemented by weighted mode, MR-Egger regression, and weighted median estimators. A battery of sensitivity analyses was performed, including horizontal pleiotropy assessment, heterogeneity test, Steiger test, and leave-one-out analysis. Furthermore, replication analysis and meta-analysis were conducted with another GWAS dataset of IPF containing 4,125 IPF cases and 20,464 control subjects. Mediation analyses were used to identify the mediating role of confounders in the effect of metabolites on IPF. RESULTS: There were four metabolites associated with the elevated risk of IPF, namely glucose (odds ratio [OR] = 2.49, 95% confidence interval [95%CI] = 1.13-5.49, P = 0.024), urea (OR = 6.24, 95% CI = 1.77-22.02, P = 0.004), guanosine (OR = 1.57, 95%CI = 1.07-2.30, P = 0.021), and ADpSGEGDFXAEGGGVR (OR = 1.70, 95%CI = 1.00-2.88, P = 0.0496). Of note, the effect of guanosine on IPF was found to be mediated by gastroesophageal reflux disease. Reverse Mendelian randomization analysis displayed that IPF might slightly elevate guanosine levels in the blood. CONCLUSION: Conclusively, hyperglycemia may confer a promoting effect on IPF, highlighting that attention should be paid to the relationship between diabetes and IPF, not solely to the diagnosis of diabetes. Additionally, urea, guanosine, and ADpSGEGDFXAEGGGVR also facilitate the development of IPF. This study may provide a reference for analyzing the potential mechanism of IPF and carry implications for the prevention and treatment of IPF.


Assuntos
Diabetes Mellitus , Fibrose Pulmonar Idiopática , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Guanosina , Fibrose Pulmonar Idiopática/genética , Ureia
12.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1579-1586, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621942

RESUMO

This study aims to investigate the effects of Gualou Xiebai Banxia Decoction(GXBD) on type 2 diabetes mellitus(T2DM) combined with acute myocardial infarction(AMI) in rats via chemerin/chemokine-like receptor 1(CMKLR1)/peroxisome proliferator-activated receptor α(PPARα) signaling pathway, and to explore the mechanism of GXBD in alleviating glucose and lipid metabolism disorders. The SD rats were randomized into control, model, positive control, and low-and high-dose GXBD groups. The rat model of T2DM was established by administration with high-fat emulsion(HFE) by gavage and intraperitoneal injection with streptozotocin, and then coronary artery ligation was performed to induce AMI. The control and model groups were administrated with the equal volume of normal saline, and other groups were administrated with corresponding drugs by gavage. Changes in relevant metabolic indicators were assessed by ELISA and biochemical assays, and the protein levels of chemerin, CMKLR1, and PPARα in the liver, abdominal fat, and heart were determined by Western blot. The results showed that GXBD alleviated the myocardial damage and reduced the levels of blood lipids, myocardial enzymes, and inflammatory cytokines, while it did not lead to significant changes in blood glucose. Compared with the model group, GXBD down-regulated the expression of chemerin in peripheral blood and up-regulated the expression of cyclic adenosine monophosphate(cAMP) and protein kinase A(PKA) in the liver. After treatment with GXBD, the protein levels of chemerin and CMKLR1 in the liver, abdominal fat, and heart were down-regulated, while the protein levels of PPARα in the liver and abdominal fat were up-regulated. In conclusion, GXBD significantly ameliorated the disorders of glycolipid metabolism in the T2DM-AMI model by regulating the chemerin/CMKLR1/PPARα signaling pathway to exert a protective effect on the damaged myocardium. This study provides a theoretical basis for further clinical study of GXBD against T2DM-AMI and is a manifestation of TCM treatment of phlegm and turbidity causing obstruction at the protein level.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Ratos , Animais , PPAR alfa/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ratos Sprague-Dawley , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Quimiocinas
13.
Indian J Med Microbiol ; 49: 100574, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38561026

RESUMO

PURPOSE: The Shewanella genus is a rare pathogen of marine origin. In recent years, there has been a continuous increase in infection cases caused by this bacterium, and we have observed the uniqueness of infections caused by this microorganism. MATERIALS AND METHODS: This study conducted a retrospective analysis of the medical history and laboratory examination data of patients infected with the Shewanella genus over the past decade. Additionally, it employed bioinformatics methods to analyze the relevant virulence factors and antibiotic resistance genes associated with the Shewanella genus. RESULTS: Over the past 10 years, we have isolated 51 cases of Shewanella, with 68.82% being Shewanella putrefaciens (35/51 cases) and 31.37% being Shewanella algae (16/51 cases). Infected individuals often had underlying diseases, with 39.22% (20/51) having malignant tumors and 25.49% (13/51) having liver and biliary system diseases primarily characterized by stones. The majority of patients, 62.74% (32/51), exhibited mixed infections, including one case with a combination of infections from three other types of bacteria and five cases with a combination of infections from two other types of bacteria. The identified microorganisms were commonly resistant to ticarcillin-clavulanic acid (23.5%), followed by cefoperazone-sulbactam (19.6%), ciprofloxacin (17.6%), and cefotaxime (17.6%). Bioinformatics analysis indicates that Shewanella can express bile hydrolysis regulators and fatty acid metabolism regulators that aid in adapting to the unique environment of the biliary tract. Additionally, it expresses abundant catalase, superoxide dismutase, and two-component signal transduction system proteins, which may be related to environmental adaptation. Shewanella also expresses various antibiotic resistance genes, including beta-lactamases and aminoglycoside modification enzymes. Iron carriers may be one of its important virulence factors. CONCLUSIONS: We speculate that the Shewanella genus may exist as a specific colonizer in the human body, and under certain conditions, it may act as a pathogen, leading to biliary infections in the host.

14.
ISA Trans ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38582636

RESUMO

In recent years, distributed optimization problem have a wide range of applications in various fields. This paper considers the prescribed-time distributed optimization problem with/without constraints. Firstly, we assume the state of each agent is constrained, and the prescribed-time distributed optimization algorithm with constraints is designed on the basis of gradient projection algorithm and consensus algorithm. Secondly, the constrained distributed optimization problem is transformed into the unconstrained distributed optimization problem, and according to the gradient descent algorithm and consensus algorithm, we also propose the prescribed-time distributed optimization algorithm without constraints. By designing the appropriate objective functions, we prove the multi-agent system can converge to the optimal solution within any prescribed-time, and the convergence time is fully independent of the initial conditions and system parameters. Finally, three simulation examples are provided to verify the validity of the designed algorithms.

16.
MycoKeys ; 102: 183-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434108

RESUMO

During an investigation of lignicolous freshwater fungi in the Tibetan Plateau, three Aquapteridospora taxa were collected from freshwater habitats in Xizang, China. The new species possess polyblastic, sympodial, denticles conidiogenous cells and fusiform, septate, with or without sheath conidial, that fit within the generic concept of Aquapteridospora, and multi-gene phylogeny placed these species within Aquapteridospora. Detailed morphological observations clearly demarcate three of these from extant species and are hence described as new taxa. The multi-gene phylogeny of the combined LSU, TEF1-α, and ITS sequence data to infer phylogenetic relationships and discuss phylogenetic affinities with morphologically similar species. Based on morphological characteristics and phylogenetic analyses, three new species viz. A.linzhiensis, A.yadongensis, and A.submersa are introduced. Details of asexual morphs are described, and justifications for establishing these new species are also provided in this study.

17.
J Med Virol ; 96(3): e29481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425184

RESUMO

Hepatitis C remains a global health problem, especially in poverty-stricken areas. A rapid and sensitive point-of-care (POC) diagnostic tool is critical for the early detection and timely treatment of hepatitis C virus (HCV) infection. Here, for the first time, we reported a novel molecular diagnostic assay, termed reverse transcription multiple cross displacement amplification integrated with a gold-nanoparticle-based lateral flow biosensor (RT-MCDA-AuNPs-LFB), which was developed for rapid, sensitive, specific, and visual identification of HCV. HCV-RT-MCDA induced rapid isothermal amplification through a specific primer set targeting the 5'untranslated region gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a that are prevalent in China. The optimal reaction temperature and time for RT-MCDA-AuNPs-LFB were 68°C and 25 min, respectively. The limit of detection of the assay was 10 copies per test, and the specificity was 100% for the experimental strains. The whole detection procedure, including crude nucleic acid isolation (~5 min), RT-MCDA (68°C, 25 min), and visual AuNPs-LFB result confirmation (less than 2 min), was performed within 35 min. The preliminary results indicated that the HCV-RT-MCDA-AuNPs-LFB assay could be a valuable tool for sensitive, specific, visual, cost-saving, and rapid detection of HCV and has potential as a POC diagnostic platform for field screening and early clinical detection of HCV infection.


Assuntos
Técnicas Biossensoriais , Hepatite C , Nanopartículas Metálicas , Humanos , Hepacivirus/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Ouro , Hepatite C/diagnóstico , Técnicas Biossensoriais/métodos
18.
Sci Rep ; 14(1): 6691, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509170

RESUMO

The clinical effects of Schisandra chinensis against human disease are well-documented; however, studies on its application in controlling plant pathogens are limited. Here, we investigated its inhibitory effect on the growth of Alternaria alternata, a fungus which causes significant post-harvest losses on apples, known as black spot disease. S. chinensis fruit extract exhibited strong inhibitory effects on the growth of A. alternata with an EC50 of 1882.00 mg/L. There were 157 compounds identified in the extract by high performance liquid chromatography-mass spectrometry, where benzocaine constituted 14.19% of the extract. Antifungal experiments showed that the inhibitory activity of benzocaine on A. alternata was 43.77-fold higher than the crude extract. The application of benzocaine before and after A. alternata inoculation on apples prevented the pathogen infection and led to mycelial distortion according to scanning electron microscopy. Transcriptome analysis revealed that there were 4226 genes differentially expressed between treated and untreated A. alternata-infected apples with benzocaine. Metabolomics analysis led to the identification of 155 metabolites. Correlation analysis between the transcriptome and metabolome revealed that benzocaine may inhibit A. alternata growth via the beta-alanine metabolic pathway. Overall, S. chinensis extract and benzocaine are environmentally friendly plant-based fungicides with potential to control A. alternata.


Assuntos
Fungicidas Industriais , Schisandra , Humanos , Benzocaína/farmacologia , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Alternaria/genética
19.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38549423

RESUMO

AIMS: Ravelling the central but poorly understood issue that potential contributions of keystone species to intestinal ecosystem functioning of patients with certain life-altering diseases including Crohn's disease (CD). METHODS AND RESULTS: In this study, a combination of 16S rRNA gene amplicon sequencing and amplicon-oriented metagenomic profiling was applied to gain insights into the shifts in bacterial community composition at different stages of CD course, and explore the functional roles of identified keystone species in intestinal microecosystem. Our results showed significant alterations in structure and composition of gut microbiota between CD patients and healthy control (HC) (P < 0.05), but was no difference at active and remission stages. Whole-community-based comprehensive analyses were employed to identify the differential species such as Escherichia coli, Anaerostipes hadrus, and Eubacterium hallii in CD patients, with healthy populations as the control. Metagenome-wide functional analyses further revealed that the relative abundance of specialized metabolism-related genes such as cynS, frdB, serA, and gltB from these bacterial species in CD group was significantly different (P < 0.05) from that in HC, and highlighted the potential roles of the keystone species in regulating the accumulation of important metabolites such as succinate, formate, ammonia, L-glutamate, and L-serine, which might have an effect on homeostasis of intestinal ecosystem. CONCLUSIONS: The findings identify several potential keystone species that may influence the intestinal microecosystem functioning of CD patients and provide some reference for future CD treatment.


Assuntos
Doença de Crohn , Humanos , Bactérias/genética , Fezes/microbiologia , Intestinos/microbiologia , RNA Ribossômico 16S/genética
20.
Genes (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540324

RESUMO

Phenylalanine ammonia-lyase (PAL) is an essential enzyme in the phenylpropanoid pathway, in which numerous aromatic intermediate metabolites play significant roles in plant growth, adaptation, and disease resistance. Cultivated peanuts are highly susceptible to Aspergillus flavus L. infection. Although PAL genes have been characterized in various major crops, no systematic studies have been conducted in cultivated peanuts, especially in response to A. flavus infection. In the present study, a systematic genome-wide analysis was conducted to identify PAL genes in the Arachis hypogaea L. genome. Ten AhPAL genes were distributed unevenly on nine A. hypogaea chromosomes. Based on phylogenetic analysis, the AhPAL proteins were classified into three groups. Structural and conserved motif analysis of PAL genes in A. hypogaea revealed that all peanut PAL genes contained one intron and ten motifs in the conserved domains. Furthermore, synteny analysis indicated that the ten AhPAL genes could be categorized into five pairs and that each AhPAL gene had a homologous gene in the wild-type peanut. Cis-element analysis revealed that the promoter region of the AhPAL gene family was rich in stress- and hormone-related elements. Expression analysis indicated that genes from Group I (AhPAL1 and AhPAL2), which had large number of ABRE, WUN, and ARE elements in the promoter, played a strong role in response to A. flavus stress.


Assuntos
Arachis , Aspergillus flavus , Aspergillus flavus/genética , Arachis/genética , Arachis/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...